Mark Scheme 4723

June 2007

1 (i) Attempt use of product rule
Obtain $3 x^{2}(x+1)^{5}+5 x^{3}(x+1)^{4}$

M1
A1 2 or equiv
[Or: (following complete expansion and differentiation term by term)
Obtain $8 x^{7}+35 x^{6}+60 x^{5}+50 x^{4}+20 x^{3}+3 x^{2} \quad$ B2 allow B1 if one term incorrect]
(ii) Obtain derivative of form $k x^{3}\left(3 x^{4}+1\right)^{n}$

M1 any constants k and n
Obtain derivative of form $k x^{3}\left(3 x^{4}+1\right)^{-\frac{1}{2}}$
Obtain correct $6 x^{3}\left(3 x^{4}+1\right)^{-\frac{1}{2}}$ M1

A1 3 or (unsimplified) equiv

2 Identify critical value $x=2$
B1
Attempt process for determining both
critical values M1
Obtain $\frac{1}{3}$ and 2
Attempt process for solving inequality
M1 table, sketch ...;
implied by plausible answer
Obtain $\frac{1}{3}<x<2$
A1 5

3 (i) Attempt correct process for composition
Obtain (16 and hence) 7
(ii) Attempt correct process for finding inverse

Obtain $(x-3)^{2}$
(iii) Sketch (more or less) correct $y=\mathrm{f}(x)$

Sketch (more or less) correct $y=\mathrm{f}^{-1}(x)$
State reflection in line $y=x$

M1 numerical or algebraic
A1 2
M1 maybe in terms of y so far
A1 2 or equiv; in terms of x, not y

B1 with 3 indicated or clearly implied on y-axis, correct curvature, no maximum point
B1 right hand half of parabola only
B1 $\mathbf{3}$ or (explicit) equiv; independent of earlier marks

4 (i) Obtain integral of form $k(2 x+1)^{\frac{4}{3}}$

Obtain correct $\frac{3}{8}(2 x+1)^{\frac{4}{3}}$
Substitute limits in expression of form $(2 x+1)^{n}$
and subtract the correct way round
Obtain 30
(ii) Attempt evaluation of $k\left(y_{0}+4 y_{1}+y_{2}\right)$

Identify k as $\frac{1}{3} \times 6.5$
Obtain 29.6
[SR: (using Simpson's rule with 4 strips)
Obtain $\frac{1}{3} \times 3.25(1+4 \times \sqrt[3]{7.5}+2 \times \sqrt[3]{14}+4 \times \sqrt[3]{20.5}+3)$
and hence 29.9

M1 or equiv using substitution;
any constant k
A1 or equiv

M1 using adjusted limits if subn used
A1 4

M1 any constant k
A1
A1 3 or greater accuracy (29.554566...)

B1 or greater accuracy (29.897...)]

5 (i) State $\mathrm{e}^{-0.04 t}=0.5$
Attempt solution of equation of form $\mathrm{e}^{-0.04 t}=k$
Obtain 17
(ii) Differentiate to obtain form $\mathrm{ke}^{-0.04 t}$

Obtain (\pm) 9.6e ${ }^{-0.04 t}$
Equate attempt at first derivative to $(\pm) 2.1$ and attempt solution
Obtain 38

B1 or equiv
M1 using sound process; maybe implied
A1 3 or greater accuracy (17.328...)
*M1 constant k different from 240
A1 or (unsimplified) equiv
M1 dep *M; method maybe implied
A1 4 or greater accuracy (37.9956...)

6 (i) Obtain integral of form $k_{1} \mathrm{e}^{2 x}+k_{2} x^{2}$
Obtain correct $3 \mathrm{e}^{2 x}+\frac{1}{2} x^{2}$
Obtain $3 \mathrm{e}^{2 a}+\frac{1}{2} a^{2}-3$
Equate definite integral to 42 and attempt rearrangement
Confirm $\quad a=\frac{1}{2} \ln \left(15-\frac{1}{6} a^{2}\right)$
(ii) Obtain correct first iterate 1.348...

Attempt correct process to find at least
2 iterates
Obtain at least 3 correct iterates
Obtain 1.344

M1 any non-zero constants k_{1}, k_{2}
A1
A1

M1 using sound processes
A1 5 AG; necessary detail required

B1

M1
A1
A1 4 answer required to exactly 3 d.p.; allow recovery after error

$$
[1 \rightarrow 1.34844 \rightarrow 1.34382 \rightarrow 1.34389]
$$

7 (i) Show correct general shape (alternating above and below x-axis)
Draw (more or less) correct sketch
(ii) Attempt solution of $\cos x=\frac{1}{3}$

Obtain 1.23 or 0.392π
Obtain 5.05 or 1.61π
(iii) Either: Obtain equation of form $\tan \theta=k$ M1

Obtain $\tan \theta=5$
Obtain two values only of form
$\theta, \theta+\pi$

Obtain 1.37 and 4.51 (or 0.437π and 1.44π)

Or: (for methods which involve squaring,etc.) Attempt to obtain eqn in one trig ratio Obtain correct value

Attempt solution at least to find one value in first quadrant and one value in third
Obtain 1.37 and 4.51
(or equivs as above)

M1 with no branch reaching x-axis
A1 2 with at least one of 1 and -1 indicated or clearly implied

M1 maybe implied; or equiv
A1 or greater accuracy
A1 3 or greater accuracy and no others within $0 \leq x \leq 2 \pi$; penalise answer(s) to 2sf only once
any constant k; maybe implied
A1
M1 within $0 \leq x \leq 2 \pi$; allow degrees at this stage

A1 4 allow ± 1 in third sig fig; or greater accuracy

M1
A1 $\tan ^{2} \theta=25, \cos ^{2} \theta=\frac{1}{26}, \ldots$

A1 ignoring values in second and fourth quadrants

8 (i) Attempt use of quotient rule
Obtain $\frac{(4 \ln x+3) \frac{4}{x}-(4 \ln x-3) \frac{4}{x}}{(4 \ln x+3)^{2}}$
Confirm $\frac{24}{x(4 \ln x+3)^{2}}$
(ii) Identify $\ln x=\frac{3}{4}$

State or imply $x=\mathrm{e}^{\frac{3}{4}}$
Substitute e^{k} completely in expression for derivative
Obtain $\frac{2}{3} \mathrm{e}^{-\frac{3}{4}}$
(iii) State or imply $\int \frac{4 \pi}{x(4 \ln x+3)^{2}} \mathrm{~d} x$

Obtain integral of form $k \frac{4 \ln x-3}{4 \ln x+3}$

$$
\text { or } k(4 \ln x+3)^{-1}
$$

Substitute both limits and subtract right way round
Obtain $\frac{4}{21} \pi$

M1 allow for numerator 'wrong way round'; or equiv

A1 or equiv

A1 3 AG; necessary detail required

B1 or equiv
B1

M1 and deal with $\ln \mathrm{e}^{k}$ term
A1 $\mathbf{4}$ or exact (single term) equiv

B1
*M1 any constant k

M1 dep *M
A1 4 or exact equiv

9 (i) Attempt use of either of $\tan (A \pm B)$ identities
Substitute $\tan 60^{\circ}=\sqrt{3}$ or $\tan ^{2} 60^{\circ}=3$
Obtain $\frac{\tan \theta+\sqrt{3}}{1-\sqrt{3} \tan \theta} \times \frac{\tan \theta-\sqrt{3}}{1+\sqrt{3} \tan \theta}$

Obtain $\frac{\tan ^{2} \theta-3}{1-3 \tan ^{2} \theta}$
(ii) Use $\sec ^{2} \theta=1+\tan ^{2} \theta$

Attempt rearrangement and simplification of equation involving $\tan ^{2} \theta$
Obtain $\tan ^{4} \theta=\frac{1}{3}$
Obtain 37.2
Obtain 142.8
(iii) Attempt rearrangement of $\frac{\tan ^{2} \theta-3}{1-3 \tan ^{2} \theta}=k^{2}$ to form

$$
\tan ^{2} \theta=\frac{\mathrm{f}(k)}{\mathrm{g}(k)}
$$

Obtain $\tan ^{2} \theta=\frac{k^{2}+3}{1+3 k^{2}}$
Observe that RHS is positive for all k, giving one value in each quadrant

M1

B1
A1 or equiv (perhaps with $\tan 60^{\circ}$ still involved)

A1 4 AG

B1

M1 or equiv involving $\sec \theta$
A1 or equiv $\sec ^{2} \theta=1.57735 \ldots$
A1 or greater accuracy
A1 5 or greater accuracy; and no others between 0 and 180

A1 3 or convincing equiv

