Mark Scheme 4723 June 2007

physicsandmathstutor.com

Mark Scheme

4723

June 2007

1 (i)	Attempt use of product rule	M1		
	Obtain $3x^2(x+1)^5 + 5x^3(x+1)^4$	A1		2 or equiv
	[Or: (following complete expansion and differentiation		rm t	-
	Obtain $8x^7 + 35x^6 + 60x^5 + 50x^4 + 20x^3 + 3x^2$	B2		allow B1 if one term incorrect]
(ii)	Obtain derivative of form $kx^3(3x^4 + 1)^n$	M1		any constants k and n
	Obtain derivative of form $kx^3(3x^4+1)^{-\frac{1}{2}}$	M 1		
	Obtain correct $6x^3(3x^4 + 1)^{-\frac{1}{2}}$	A1		3 or (unsimplified) equiv
2	Identify critical value $x = 2$	B1		
	Attempt process for determining both			
	critical values	M1		
	Obtain $\frac{1}{3}$ and 2	A1		
	Attempt process for solving inequality	M1		table, sketch; implied by plausible answer
	Obtain $\frac{1}{3} < x < 2$	A1	5	implied by plausible answer
3 (i)	Attempt correct process for composition	M1		numerical or algebraic
	Obtain (16 and hence) 7	A1	2	
(ii)	Attempt correct process for finding inverse	M1		maybe in terms of y so far
	Obtain $(x-3)^2$	A1	2	or equiv; in terms of x , not y
(iii)	Sketch (more or less) correct $y = f(x)$	B1		with 3 indicated or clearly implied on <i>y</i> -axis, correct curvature, no maximum point
	Sketch (more or less) correct $y = f^{-1}(x)$ State reflection in line $y = x$	B1 B1	3	right hand half of parabola only or (explicit) equiv; independent of earlier marks
4 (i)	Obtain integral of form $k(2x+1)^{\frac{4}{3}}$	M1		or equiv using substitution; any constant k
	Obtain correct $\frac{3}{8}(2x+1)^{\frac{4}{3}}$	A1		or equiv
	Substitute limits in expression of form $(2x+1)^n$			
	and subtract the correct way round	M1		using adjusted limits if subn used
	Obtain 30	A1	4	
(ii)	Attempt evaluation of $k(y_0 + 4y_1 + y_2)$	M1		any constant k
	Identify k as $\frac{1}{3} \times 6.5$	A1		
	Obtain 29.6	A1	3	or greater accuracy (29.554566)
	[SR: (using Simpson's rule with 4 strips)			
	Obtain $\frac{1}{3} \times 3.25(1 + 4 \times \sqrt[3]{7.5} + 2 \times \sqrt[3]{14} + 4 \times \sqrt[3]{20.5} + 3)$			
	and hence 29.9	B1		or greater accuracy (29.897)]

physicsandmathstutor.com

Mark Scheme

4723

June 2007

5 (i)	State e	-0.04t = 0.5	B1		or equiv
		t solution of equation of form $e^{-0.04t} = k$	M1		using sound process; maybe
				_	implied
	Obtain	17	A1	3	or greater accuracy (17.328)
(ii)	Differe	ntiate to obtain form $k e^{-0.04t}$	*M1		constant k different from 240
	Obtain	$(\pm) 9.6e^{-0.04t}$	A1		or (unsimplified) equiv
	Equate	attempt at first derivative to (\pm) 2.1 and			
	-	solution	M1		dep *M; method maybe implied
	Obtain	38	A1	4	or greater accuracy (37.9956)
		2 2			
6 (i)		integral of form $k_1 e^{2x} + k_2 x^2$	M1		any non-zero constants k_1, k_2
	Obtain	correct $3e^{2x} + \frac{1}{2}x^2$	A1		
	Obtain	$3e^{2a} + \frac{1}{2}a^2 - 3$	A1		
	Equate	definite integral to 42 and attempt			
		ngement	M1		using sound processes
	Confirm	n $a = \frac{1}{2} \ln(15 - \frac{1}{6}a^2)$	A1	5	AG; necessary detail required
(ii)	Obtain	correct first iterate 1.348	B1		
(11)		t correct process to find at least	DI		
	2 iterate	-	M1		
	Obtain	at least 3 correct iterates	A1		
	Obtain	1.344	A1	4	1 2 1 7
		$[1 \rightarrow 1.34844 \rightarrow 1.3438$	$32 \rightarrow 1$	343	allow recovery after error
7 (i)	Show c	orrect general shape (alternating above			
		ow <i>x</i> -axis)	M1		with no branch reaching x-axis
	Draw (1	more or less) correct sketch	A1	2	with at least one of 1 and -1
					indicated or clearly implied
(ii)	Attemp	t solution of $\cos x = \frac{1}{3}$	M1		maybe implied; or equiv
	Obtain	1.23 or 0.392π	A1		or greater accuracy
	Obtain	5.05 or 1.61π	A1	3	8
					within $0 \le x \le 2\pi$; penalise
					answer(s) to 2sf only once
(iii)	Either:	1	-	con	stant k; maybe implied
		Obtain $\tan \theta = 5$	A1		
		Obtain two values only of form $0 - 0 + -$	M1		
		$\theta, \ \theta + \pi$	M1		within $0 \le x \le 2\pi$; allow degrees at this stage
		Obtain 1.37 and 4.51 (or 0.437π			at this stage
		and 1.44π)	A1	4	allow ± 1 in third sig fig; or greater
	0				accuracy
	<u>Or</u> :	(for methods which involve squaring,etc.) Attempt to obtain eqn in one trig ratio	M1		
					$\tan^2 \theta$ 25 $\cos^2 \theta$ 1
		Obtain correct value	A1		$\tan^2\theta=25,\cos^2\theta=\frac{1}{26},\ldots$
		Attempt solution at least to find one value in first quadrant and one value			
		in third	M1		
		Obtain 1.37 and 4.51			
		(or equivs as above)	A1		ignoring values in second and fourth
					quadrants

Mark Scheme

4723

June 2007

8 (i)	Attempt use of quotient rule	M 1		allow for numerator 'wrong way round'; or equiv
	Obtain $\frac{(4\ln x + 3)\frac{4}{x} - (4\ln x - 3)\frac{4}{x}}{(4\ln x + 3)^2}$	A1		or equiv
	Confirm $\frac{24}{x(4\ln x + 3)^2}$	A1	3	AG; necessary detail required
(ii)	Identify $\ln x = \frac{3}{4}$	B1		or equiv
	State or imply $x = e^{\frac{3}{4}}$	B1		
	Substitute e ^{<i>k</i>} completely in expression for			
	derivative	M 1		and deal with $\ln e^k$ term
	Obtain $\frac{2}{3}e^{-\frac{3}{4}}$	A1	4	or exact (single term) equiv
(iii)	State or imply $\int \frac{4\pi}{x(4\ln x + 3)^2} dx$	B 1		
	Obtain integral of form $k \frac{4 \ln x - 3}{4 \ln x + 3}$			
	or $k(4\ln x + 3)^{-1}$	*M1		any constant k
	Substitute both limits and subtract right way	M1		1
	round Obtain $\frac{4}{21}\pi$	M1 A1	4	dep *M or exact equiv
		711		or exact equit
0 (1)		3.7.1		
9 (i)	Attempt use of either of $tan(A \pm B)$ identities Substitute $tan 60^\circ = \sqrt{3}$ or $tan^2 60^\circ = 3$	M1 R1		
9 (i)	Substitute $\tan 60^\circ = \sqrt{3}$ or $\tan^2 60^\circ = 3$	B1		
9 (i)	Substitute $\tan 60^\circ = \sqrt{3}$ or $\tan^2 60^\circ = 3$			or equiv (perhaps with tan 60 $^{\circ}$
9 (i)		B1		or equiv (perhaps with tan 60° still involved)
9 (i)	Substitute $\tan 60^\circ = \sqrt{3}$ or $\tan^2 60^\circ = 3$ Obtain $\frac{\tan \theta + \sqrt{3}}{1 - \sqrt{3} \tan \theta} \times \frac{\tan \theta - \sqrt{3}}{1 + \sqrt{3} \tan \theta}$	B1 A1	4	still involved)
9 (i)	Substitute $\tan 60^\circ = \sqrt{3}$ or $\tan^2 60^\circ = 3$	B1	4	
	Substitute $\tan 60^\circ = \sqrt{3}$ or $\tan^2 60^\circ = 3$ Obtain $\frac{\tan \theta + \sqrt{3}}{1 - \sqrt{3} \tan \theta} \times \frac{\tan \theta - \sqrt{3}}{1 + \sqrt{3} \tan \theta}$ Obtain $\frac{\tan^2 \theta - 3}{1 - 3 \tan^2 \theta}$	B1 A1 A1	4	still involved)
9 (i) (ii)	Substitute $\tan 60^\circ = \sqrt{3}$ or $\tan^2 60^\circ = 3$ Obtain $\frac{\tan \theta + \sqrt{3}}{1 - \sqrt{3} \tan \theta} \times \frac{\tan \theta - \sqrt{3}}{1 + \sqrt{3} \tan \theta}$ Obtain $\frac{\tan^2 \theta - 3}{1 - 3 \tan^2 \theta}$ Use $\sec^2 \theta = 1 + \tan^2 \theta$	B1 A1	4	still involved)
	Substitute $\tan 60^\circ = \sqrt{3}$ or $\tan^2 60^\circ = 3$ Obtain $\frac{\tan \theta + \sqrt{3}}{1 - \sqrt{3} \tan \theta} \times \frac{\tan \theta - \sqrt{3}}{1 + \sqrt{3} \tan \theta}$ Obtain $\frac{\tan^2 \theta - 3}{1 - 3 \tan^2 \theta}$	B1 A1 A1	4	still involved)
	Substitute $\tan 60^\circ = \sqrt{3}$ or $\tan^2 60^\circ = 3$ Obtain $\frac{\tan \theta + \sqrt{3}}{1 - \sqrt{3} \tan \theta} \times \frac{\tan \theta - \sqrt{3}}{1 + \sqrt{3} \tan \theta}$ Obtain $\frac{\tan^2 \theta - 3}{1 - 3 \tan^2 \theta}$ Use $\sec^2 \theta = 1 + \tan^2 \theta$ Attempt rearrangement and simplification of	B1A1A1B1	4	still involved) AG
	Substitute $\tan 60^\circ = \sqrt{3}$ or $\tan^2 60^\circ = 3$ Obtain $\frac{\tan \theta + \sqrt{3}}{1 - \sqrt{3} \tan \theta} \times \frac{\tan \theta - \sqrt{3}}{1 + \sqrt{3} \tan \theta}$ Obtain $\frac{\tan^2 \theta - 3}{1 - 3 \tan^2 \theta}$ Use $\sec^2 \theta = 1 + \tan^2 \theta$ Attempt rearrangement and simplification of equation involving $\tan^2 \theta$ Obtain $\tan^4 \theta = \frac{1}{3}$ Obtain 37.2	 B1 A1 A1 B1 M1 A1 A1 		still involved) AG or equiv involving $\sec \theta$ or equiv $\sec^2 \theta = 1.57735$ or greater accuracy
	Substitute $\tan 60^\circ = \sqrt{3}$ or $\tan^2 60^\circ = 3$ Obtain $\frac{\tan \theta + \sqrt{3}}{1 - \sqrt{3} \tan \theta} \times \frac{\tan \theta - \sqrt{3}}{1 + \sqrt{3} \tan \theta}$ Obtain $\frac{\tan^2 \theta - 3}{1 - 3 \tan^2 \theta}$ Use $\sec^2 \theta = 1 + \tan^2 \theta$ Attempt rearrangement and simplification of equation involving $\tan^2 \theta$ Obtain $\tan^4 \theta = \frac{1}{3}$	 B1 A1 A1 B1 M1 A1 		still involved) AG or equiv involving $\sec \theta$ or equiv $\sec^2 \theta = 1.57735$
	Substitute $\tan 60^\circ = \sqrt{3}$ or $\tan^2 60^\circ = 3$ Obtain $\frac{\tan \theta + \sqrt{3}}{1 - \sqrt{3} \tan \theta} \times \frac{\tan \theta - \sqrt{3}}{1 + \sqrt{3} \tan \theta}$ Obtain $\frac{\tan^2 \theta - 3}{1 - 3 \tan^2 \theta}$ Use $\sec^2 \theta = 1 + \tan^2 \theta$ Attempt rearrangement and simplification of equation involving $\tan^2 \theta$ Obtain $\tan^4 \theta = \frac{1}{3}$ Obtain 37.2	 B1 A1 A1 B1 M1 A1 A1 		still involved) AG or equiv involving $\sec \theta$ or equiv $\sec^2 \theta = 1.57735$ or greater accuracy or greater accuracy; and no others
(ii)	Substitute $\tan 60^\circ = \sqrt{3}$ or $\tan^2 60^\circ = 3$ Obtain $\frac{\tan \theta + \sqrt{3}}{1 - \sqrt{3} \tan \theta} \times \frac{\tan \theta - \sqrt{3}}{1 + \sqrt{3} \tan \theta}$ Obtain $\frac{\tan^2 \theta - 3}{1 - 3 \tan^2 \theta}$ Use $\sec^2 \theta = 1 + \tan^2 \theta$ Attempt rearrangement and simplification of equation involving $\tan^2 \theta$ Obtain $\tan^4 \theta = \frac{1}{3}$ Obtain 37.2 Obtain 142.8	 B1 A1 A1 B1 M1 A1 A1 		still involved) AG or equiv involving $\sec \theta$ or equiv $\sec^2 \theta = 1.57735$ or greater accuracy or greater accuracy; and no others

Obtain $\tan^2 \theta = \frac{k^2 + 3}{1 + 3k^2}$ Observe that RHS is positive for all *k*, giving one

value in each quadrant

A1 3 or convincing equiv